Merge pull request #612 from Rwothoromo/week3

Week 3 assignment and task
This commit is contained in:
Ed Donner
2025-08-23 10:13:05 +01:00
committed by GitHub
2 changed files with 475 additions and 0 deletions

View File

@@ -0,0 +1,249 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "18b82c6b-10dc-4d94-b8dc-592ff011ce2b",
"metadata": {},
"source": [
"# Meeting minutes creator\n",
"\n",
"In this colab, we make a meeting minutes program.\n",
"\n",
"It includes useful code to connect your Google Drive to your colab.\n",
"\n",
"Upload your own audio to make this work!!\n",
"\n",
"https://colab.research.google.com/drive/13wR4Blz3Ot_x0GOpflmvvFffm5XU3Kct?usp=sharing\n",
"\n",
"This should run nicely on a low-cost or free T4 box.\n",
"\n",
"## **Assignment:**\n",
"Put Everything into a nice Gradio UI (similar to last week)\n",
"Input file name of audio to process.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9289ba7-200c-43a9-b67a-c5ce826c9537",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import re, requests, json, tempfile, gradio as gr, torch, os\n",
"from bs4 import BeautifulSoup\n",
"from IPython.display import Markdown, display, update_display\n",
"from google.colab import drive, userdata\n",
"from huggingface_hub import login\n",
"from openai import OpenAI\n",
"from pydub import AudioSegment\n",
"from pydub.playback import play\n",
"from io import BytesIO\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer, BitsAndBytesConfig\n",
"\n",
"# Sign in to HuggingFace Hub\n",
"hf_token = userdata.get('HF_TOKEN')\n",
"login(hf_token, add_to_git_credential=True)\n",
"\n",
"# Sign in to OpenAI using Secrets in Colab\n",
"openai_api_key = userdata.get('OPENAI_API_KEY')\n",
"\n",
"# Initialize client\n",
"try:\n",
" openai = OpenAI(api_key=openai_api_key)\n",
"except Exception as e:\n",
" openai = None\n",
" print(f\"OpenAI client not initialized: {e}\")\n",
"\n",
"# Constants\n",
"AUDIO_MODEL = \"whisper-1\"\n",
"LLAMA = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n",
"\n",
"# Google Drive\n",
"drive.mount(\"/content/drive\")\n",
"\n",
"# Local LLM setup (Llama 3.1)\n",
"try:\n",
" quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
" )\n",
" tokenizer = AutoTokenizer.from_pretrained(LLAMA)\n",
"\n",
" # Set the pad token to the end-of-sequence token for generation\n",
" tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
" model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map=\"auto\", quantization_config=quant_config)\n",
" # model = AutoModelForCausalLM.from_pretrained(LLAMA, device_map=\"auto\", torch_dtype=torch.bfloat16, quantization_config=quant_config, trust_remote_code=True)\n",
"\n",
" model.eval() # Set model to evaluation mode\n",
"except Exception as e:\n",
" # If the local model fails to load, set variables to None\n",
" model = None\n",
" tokenizer = None\n",
" print(f\"Failed to load local model: {e}\")\n",
"\n",
"# Updated function to handle audio transcription\n",
"def transcribe_audio(audio_file):\n",
" \"\"\"\n",
" Transcribes an audio file to text using OpenAI's Whisper model.\n",
" Handles both local file paths and mounted Google Drive file paths.\n",
" \"\"\"\n",
" if not openai:\n",
" return \"OpenAI client not initialized. Please check your API key.\"\n",
"\n",
" if audio_file is None:\n",
" return \"No audio input provided.\"\n",
"\n",
" # Check if the file exists before attempting to open it\n",
" # Construct the expected path in Google Drive\n",
" # If the input is from the microphone, it will be a temporary file path\n",
" # If the input is from the textbox, it could be a full path or just a filename\n",
" if audio_file.startswith(\"/content/drive/MyDrive/llms/\"):\n",
" file_path_to_open = audio_file\n",
" else:\n",
" # Assume it's either a local path or just a filename in MyDrive/llms\n",
" # We'll prioritize checking MyDrive/llms first\n",
" gdrive_path_attempt = os.path.join(\"/content/drive/MyDrive/llms\", os.path.basename(audio_file))\n",
" if os.path.exists(gdrive_path_attempt):\n",
" file_path_to_open = gdrive_path_attempt\n",
" elif os.path.exists(audio_file):\n",
" file_path_to_open = audio_file\n",
" else:\n",
" return f\"File not found: {audio_file}. Please ensure the file exists in your Google Drive at /content/drive/MyDrive/llms/ or is a valid local path.\"\n",
"\n",
"\n",
" if not os.path.exists(file_path_to_open):\n",
" return f\"File not found: {file_path_to_open}. Please ensure the file exists.\"\n",
"\n",
"\n",
" try:\n",
" with open(file_path_to_open, \"rb\") as f:\n",
" transcription = openai.audio.transcriptions.create(\n",
" model=AUDIO_MODEL,\n",
" file=f,\n",
" response_format=\"text\"\n",
" )\n",
" return transcription\n",
" except Exception as e:\n",
" return f\"An error occurred during transcription: {e}\"\n",
"\n",
"def generate_minutes(transcription):\n",
" \"\"\"\n",
" Generates meeting minutes from a transcript using a local Llama model.\n",
" Format the input, generate a response, and return the complete text string.\n",
" \"\"\"\n",
" # Check if the local model and tokenizer were successfully loaded\n",
" if not model or not tokenizer:\n",
" return \"Local Llama model not loaded. Check model paths and hardware compatibility.\"\n",
"\n",
" system_message = \"You are an assistant that produces minutes of meetings from transcripts, with summary, key discussion points, takeaways and action items with owners, in markdown.\"\n",
" user_prompt = f\"Below is an extract transcript of an Audio recording. Please write minutes in markdown, including a summary with attendees, location and date; discussion points; takeaways; and action items with owners.\\n{transcription}\"\n",
"\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": system_message},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]\n",
"\n",
" try:\n",
" # Apply the chat template to format the messages for the model\n",
" inputs = tokenizer.apply_chat_template(messages, return_tensors=\"pt\").to(\"cuda\")\n",
"\n",
" # Generate the output. max_new_tokens controls the length of the generated text.\n",
" outputs = model.generate(inputs, max_new_tokens=2000)\n",
"\n",
" # Decode only the new tokens generated by the model (not the input tokens) to a human-readable string\n",
" response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
" # The model's response will contain the full conversation.\n",
" # Extract only the assistant's part!\n",
" assistant_start = \"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n\"\n",
" if assistant_start in response_text:\n",
" response_text = response_text.split(assistant_start)[-1]\n",
"\n",
" return response_text\n",
"\n",
" except Exception as e:\n",
" return f\"An error occurred during local model generation: {e}\"\n",
"\n",
"# Gradio UI components\n",
"with gr.Blocks() as ui:\n",
" gr.Markdown(\"# Meeting Minutes Generator\")\n",
" with gr.Row():\n",
" chatbot = gr.Chatbot(height=500, label=\"AI Assistant\")\n",
" with gr.Row():\n",
" entry = gr.Textbox(label=\"Provide the filename or path of the audio file to transcribe:\", scale=4)\n",
" submit_btn = gr.Button(\"Generate Minutes\", scale=1)\n",
" with gr.Row():\n",
" audio_input = gr.Audio(sources=[\"microphone\"], type=\"filepath\", label=\"Or speak to our AI Assistant to transcribe\", scale=4)\n",
" submit_audio_btn = gr.Button(\"Transcribe Audio\", scale=1)\n",
"\n",
" with gr.Row():\n",
" clear = gr.Button(\"Clear\")\n",
"\n",
" def process_file_and_generate(file_path, history):\n",
" transcribed_text = transcribe_audio(file_path)\n",
" minutes = generate_minutes(transcribed_text)\n",
" new_history = history + [[f\"Transcription of '{os.path.basename(file_path)}':\\n{transcribed_text}\", minutes]]\n",
" return new_history\n",
"\n",
" def process_audio_and_generate(audio_file, history):\n",
" transcribed_text = transcribe_audio(audio_file)\n",
" minutes = generate_minutes(transcribed_text)\n",
" new_history = history + [[f\"Transcription of your recording:\\n{transcribed_text}\", minutes]]\n",
" return new_history\n",
"\n",
"\n",
" submit_btn.click(\n",
" process_file_and_generate,\n",
" inputs=[entry, chatbot],\n",
" outputs=[chatbot],\n",
" queue=False\n",
" )\n",
"\n",
" submit_audio_btn.click(\n",
" process_audio_and_generate,\n",
" inputs=[audio_input, chatbot],\n",
" outputs=[chatbot],\n",
" queue=False\n",
" )\n",
"\n",
" clear.click(lambda: None, inputs=None, outputs=[chatbot], queue=False)\n",
"\n",
"ui.launch(inbrowser=True, debug=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd2020d3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@@ -0,0 +1,226 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "18b82c6b-10dc-4d94-b8dc-592ff011ce2b",
"metadata": {},
"source": [
"# Meeting minutes creator\n",
"\n",
"https://colab.research.google.com/drive/13wR4Blz3Ot_x0GOpflmvvFffm5XU3Kct?usp=sharing\n",
"\n",
"## **Week 3 task.**\n",
"Create your own tool that generates synthetic data/test data. Input the type of dataset or products or job postings, etc. and let the tool dream up various data samples.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9289ba7-200c-43a9-b67a-c5ce826c9537",
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"import gradio as gr, requests, json, time, os, torch\n",
"from transformers import pipeline, set_seed\n",
"from functools import partial\n",
"from openai import OpenAI, APIError, AuthenticationError\n",
"from google.colab import drive, userdata\n",
"from huggingface_hub import login\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
"\n",
"# Sample user_prompt = \"a list of student profiles with full name, email, course studied, and GPA for each of 6 semesters, and a CGPA for the 6 semesters\"\n",
"\n",
"# Sign in to HuggingFace Hub\n",
"hf_token = userdata.get('HF_TOKEN')\n",
"login(hf_token, add_to_git_credential=True)\n",
"\n",
"# Sign in to OpenAI using Secrets in Colab\n",
"openai_api_key = userdata.get('OPENAI_API_KEY')\n",
"\n",
"# Initialize client\n",
"try:\n",
" openai = OpenAI(api_key=openai_api_key)\n",
"except Exception as e:\n",
" openai = None\n",
" print(f\"OpenAI client not initialized: {e}\")\n",
"\n",
"# Constants\n",
"GPT_MODEL = \"gpt-3.5-turbo\"\n",
"\n",
"# Local Llama Model Setup\n",
"# Loads a Llama model from Hugging Face for local inference.\n",
"# Note: This requires a powerful GPU and specific library installations (e.g., bitsandbytes, accelerate).\n",
"LLAMA_MODEL = \"meta-llama/Meta-Llama-3.1-8B-Instruct\"\n",
"\n",
"try:\n",
" # Set up quantization config for efficient memory usage.\n",
" # This loads the model in 4-bit precision, significantly reducing VRAM requirements.\n",
" quant_config = BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
" bnb_4bit_quant_type=\"nf4\"\n",
" )\n",
"\n",
" # Load the tokenizer and model.\n",
" tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL)\n",
" model = AutoModelForCausalLM.from_pretrained(\n",
" LLAMA_MODEL, \n",
" device_map=\"auto\", \n",
" quantization_config=quant_config,\n",
" trust_remote_code=True\n",
" )\n",
" \n",
" # Set the model to evaluation mode for inference.\n",
" model.eval()\n",
"\n",
"except Exception as e:\n",
" model = None\n",
" tokenizer = None\n",
" print(f\"Failed to load local Llama model: {e}\")\n",
"\n",
"\n",
"def generate_with_llama(user_prompt: str, num_samples: int = 5):\n",
" \"\"\"\n",
" Generates synthetic data using a local Llama model.\n",
" Return a JSON string.\n",
" \"\"\"\n",
" if not model or not tokenizer:\n",
" return json.dumps({\"error\": \"Llama model not loaded. Check model paths and hardware compatibility.\"}, indent=2)\n",
"\n",
" # Llama 3.1 uses a specific chat template for conversation formatting.\n",
" messages = [\n",
" {\"role\": \"system\", \"content\": f\"You are a data generation assistant. Generate a JSON array of exactly {num_samples} objects based on the user's request. The output must be valid JSON only, without any other text or formatting.\"},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ]\n",
"\n",
" try:\n",
" inputs = tokenizer.apply_chat_template(messages, return_tensors=\"pt\").to(\"cuda\")\n",
"\n",
" outputs = model.generate(inputs, max_new_tokens=2000, do_sample=True, top_p=0.9, temperature=0.7)\n",
"\n",
" # Decode the generated tokens.\n",
" response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
" # Extract only the assistant's part from the complete chat history.\n",
" assistant_start = \"<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n\"\n",
" if assistant_start in response_text:\n",
" response_text = response_text.split(assistant_start)[-1]\n",
" \n",
" # Parse the JSON and return it.\n",
" parsed_json = json.loads(response_text)\n",
" return json.dumps(parsed_json, indent=2)\n",
"\n",
" except Exception as e:\n",
" return json.dumps({\"error\": f\"An error occurred during local model generation: {e}\"}, indent=2)\n",
"\n",
"\n",
"\n",
"def generate_with_gpt(user_prompt: str, num_samples: int = 5):\n",
" \"\"\"\n",
" Generates synthetic data using OpenAI's GPT.\n",
" Return a JSON string.\n",
" \"\"\"\n",
" if not openai:\n",
" return json.dumps({\"error\": \"OpenAI client not initialized. Please check your API key.\"}, indent=2)\n",
"\n",
" try:\n",
" response = openai.chat.completions.create(\n",
" model=GPT_MODEL,\n",
" messages=[\n",
" {\"role\": \"system\", \"content\": f\"You are a data generation assistant. Generate a JSON array of exactly {num_samples} objects based on the user's request. The output must be valid JSON only, without any other text or formatting.\"},\n",
" {\"role\": \"user\", \"content\": user_prompt}\n",
" ],\n",
" response_format={\"type\": \"json_object\"}\n",
" )\n",
" \n",
" json_text = response.choices[0].message.content\n",
" return json_text\n",
" except APIError as e:\n",
" return json.dumps({\"error\": f\"Error from OpenAI API: {e.body}\"}, indent=2)\n",
" except Exception as e:\n",
" return json.dumps({\"error\": f\"An unexpected error occurred: {e}\"}, indent=2)\n",
"\n",
"\n",
"def generate_data(user_prompt, model_choice):\n",
" \"\"\"\n",
" Wrapper function that calls the appropriate generation function based on model choice.\n",
" \"\"\"\n",
" if not user_prompt:\n",
" return json.dumps({\"error\": \"Please provide a description for the data.\"}, indent=2)\n",
"\n",
" if model_choice == f\"Hugging Face ({LLAMA_MODEL})\":\n",
" return generate_with_llama(user_prompt)\n",
" elif model_choice == f\"OpenAI ({GPT_MODEL})\":\n",
" return generate_with_gpt(user_prompt)\n",
" else:\n",
" return json.dumps({\"error\": \"Invalid model choice.\"}, indent=2)\n",
"\n",
"# Gradio UI\n",
"with gr.Blocks(theme=gr.themes.Soft(), title=\"Synthetic Data Generator\") as ui:\n",
" gr.Markdown(\"# Synthetic Data Generator\")\n",
" gr.Markdown(\"Describe the type of data you need, select a model, and click 'Generate'.\")\n",
"\n",
" with gr.Row():\n",
" with gr.Column(scale=3):\n",
" data_prompt = gr.Textbox(\n",
" lines=5,\n",
" label=\"Data Prompt\",\n",
" placeholder=\"e.g., a list of customer profiles with name, email, and a favorite product\"\n",
" )\n",
" \n",
" with gr.Column(scale=1):\n",
" model_choice = gr.Radio(\n",
" [f\"Hugging Face ({LLAMA_MODEL})\", f\"OpenAI ({GPT_MODEL})\"],\n",
" label=\"Choose a Model\",\n",
" value=f\"Hugging Face ({LLAMA_MODEL})\"\n",
" )\n",
" \n",
" generate_btn = gr.Button(\"Generate Data\")\n",
" \n",
" with gr.Row():\n",
" output_json = gr.JSON(label=\"Generated Data\")\n",
" \n",
" # Click trigger\n",
" generate_btn.click(\n",
" fn=generate_data,\n",
" inputs=[data_prompt, model_choice],\n",
" outputs=output_json\n",
" )\n",
"\n",
"ui.launch(inbrowser=True, debug=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd2020d3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}