Merge pull request #271 from simonsteinberg/community-contributions-branch
The Airline AI Assistant can now compare prices
This commit is contained in:
275
week2/community-contributions/day4_compare_prices.ipynb
Normal file
275
week2/community-contributions/day4_compare_prices.ipynb
Normal file
@@ -0,0 +1,275 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Project - Airline AI Assistant\n",
|
||||
"\n",
|
||||
"We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"import json\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI\n",
|
||||
"import gradio as gr"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initialization\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and be\\\\gins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
" \n",
|
||||
"MODEL = \"gpt-4o-mini\"\n",
|
||||
"openai = OpenAI()\n",
|
||||
"\n",
|
||||
"# As an alternative, if you'd like to use Ollama instead of OpenAI\n",
|
||||
"# Check that Ollama is running for you locally (see week1/day2 exercise) then uncomment these next 2 lines\n",
|
||||
"# MODEL = \"llama3.2\"\n",
|
||||
"# openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
|
||||
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
|
||||
"system_message += \"Always be accurate. If you don't know the answer, say so.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# This function looks rather simpler than the one from my video, because we're taking advantage of the latest Gradio updates\n",
|
||||
"\n",
|
||||
"def chat(message, history):\n",
|
||||
" messages = [\n",
|
||||
" {\"role\": \"system\", \"content\": system_message}\n",
|
||||
" ] + history + [\n",
|
||||
" {\"role\": \"user\", \"content\": message}\n",
|
||||
" ]\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
||||
" return response.choices[0].message.content\n",
|
||||
"\n",
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tools\n",
|
||||
"\n",
|
||||
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
|
||||
"\n",
|
||||
"With tools, you can write a function, and have the LLM call that function as part of its response.\n",
|
||||
"\n",
|
||||
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
|
||||
"\n",
|
||||
"Well, kinda."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Let's start by making a useful function\n",
|
||||
"\n",
|
||||
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
|
||||
"\n",
|
||||
"def get_ticket_price(destination_city):\n",
|
||||
" print(f\"Tool get_ticket_price called for {destination_city}\")\n",
|
||||
" city = destination_city.lower()\n",
|
||||
" return ticket_prices.get(city, \"Unknown\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"get_ticket_price(\"Berlin\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4afceded-7178-4c05-8fa6-9f2085e6a344",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# There's a particular dictionary structure that's required to describe our function:\n",
|
||||
"\n",
|
||||
"price_function = {\n",
|
||||
" \"name\": \"get_ticket_price\",\n",
|
||||
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"destination_city\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The city that the customer wants to travel to\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"destination_city\"],\n",
|
||||
" \"additionalProperties\": False\n",
|
||||
" }\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# And this is included in a list of tools:\n",
|
||||
"\n",
|
||||
"tools = [{\"type\": \"function\", \"function\": price_function}]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Getting OpenAI to use our Tool\n",
|
||||
"\n",
|
||||
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
|
||||
"\n",
|
||||
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
|
||||
"\n",
|
||||
"Here's how the new chat function looks:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ad32321f-083a-4462-a6d6-7bb3b0f5d10a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We have to write that function handle_tool_call:\n",
|
||||
"\n",
|
||||
"def handle_tool_call(message): \n",
|
||||
" responses = []\n",
|
||||
" for tool_call in message.tool_calls: \n",
|
||||
" if tool_call.function.name == \"get_ticket_price\":\n",
|
||||
" arguments = json.loads(tool_call.function.arguments)\n",
|
||||
" city = arguments.get('destination_city')\n",
|
||||
" price = get_ticket_price(city)\n",
|
||||
" response = {\n",
|
||||
" \"role\": \"tool\",\n",
|
||||
" \"content\": json.dumps({\"destination_city\": city,\"price\": price}),\n",
|
||||
" \"tool_call_id\": tool_call.id\n",
|
||||
" }\n",
|
||||
" responses.append(response)\n",
|
||||
" return responses"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat(message, history):\n",
|
||||
" messages = [\n",
|
||||
" {\"role\": \"system\", \"content\": system_message}\n",
|
||||
" ] + history + [\n",
|
||||
" {\"role\": \"user\", \"content\": message}\n",
|
||||
" ]\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
|
||||
"\n",
|
||||
" # Tool usage\n",
|
||||
" if response.choices[0].finish_reason==\"tool_calls\":\n",
|
||||
" message = response.choices[0].message\n",
|
||||
" responses = handle_tool_call(message)\n",
|
||||
" messages.append(message) # That's the assistant asking us to run a tool\n",
|
||||
" for response in responses:\n",
|
||||
" messages.append(response) # That's the result of the tool calls\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
||||
" \n",
|
||||
" return response.choices[0].message.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8dc18486-4d6b-4cbf-a6b8-16d08d7c4f54",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user