Update day5
This commit is contained in:
698
week2/community-contributions/rwothoromo/day5.ipynb
Normal file
698
week2/community-contributions/rwothoromo/day5.ipynb
Normal file
@@ -0,0 +1,698 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ddfa9ae6-69fe-444a-b994-8c4c5970a7ec",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Project - Airline AI Assistant\n",
|
||||
"\n",
|
||||
"We'll now bring together what we've learned to make an AI Customer Support assistant for an Airline"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8b50bbe2-c0b1-49c3-9a5c-1ba7efa2bcb4",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# imports\n",
|
||||
"\n",
|
||||
"import os, json, gradio as gr\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "747e8786-9da8-4342-b6c9-f5f69c2e22ae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Initialization\n",
|
||||
"\n",
|
||||
"load_dotenv(override=True)\n",
|
||||
"\n",
|
||||
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"if openai_api_key:\n",
|
||||
" print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
|
||||
"else:\n",
|
||||
" print(\"OpenAI API Key not set\")\n",
|
||||
" \n",
|
||||
"MODEL = \"gpt-4o-mini\"\n",
|
||||
"openai = OpenAI()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0a521d84-d07c-49ab-a0df-d6451499ed97",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_message = \"You are a helpful assistant for an Airline called FlightAI. \"\n",
|
||||
"system_message += \"Give short, courteous answers, no more than 1 sentence. \"\n",
|
||||
"system_message += \"Always be accurate. If you don't know the answer, say so.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "61a2a15d-b559-4844-b377-6bd5cb4949f6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Just take in history\n",
|
||||
"def chat(history):\n",
|
||||
" message = history[-1][\"content\"] # Get the last message from the user\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
|
||||
"\n",
|
||||
" if response.choices[0].finish_reason==\"tool_calls\":\n",
|
||||
" message = response.choices[0].message\n",
|
||||
" response_tool, city = handle_tool_call(message)\n",
|
||||
" messages.append(message)\n",
|
||||
" messages.append(response_tool)\n",
|
||||
" image = artist(city)\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" # After getting the final response from OpenAI\n",
|
||||
" final_response_content = response.choices[0].message.content\n",
|
||||
" history.append({\"role\": \"assistant\", \"content\": final_response_content})\n",
|
||||
"\n",
|
||||
" # The return value should be a tuple of (history, image)\n",
|
||||
" return history, image\n",
|
||||
"\n",
|
||||
"# gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "36bedabf-a0a7-4985-ad8e-07ed6a55a3a4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tools\n",
|
||||
"\n",
|
||||
"Tools are an incredibly powerful feature provided by the frontier LLMs.\n",
|
||||
"\n",
|
||||
"With tools, you can write a function, and have the LLM call that function as part of its response.\n",
|
||||
"\n",
|
||||
"Sounds almost spooky.. we're giving it the power to run code on our machine?\n",
|
||||
"\n",
|
||||
"Well, kinda."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0696acb1-0b05-4dc2-80d5-771be04f1fb2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Let's start by making a useful function\n",
|
||||
"\n",
|
||||
"ticket_prices = {\"london\": \"$799\", \"paris\": \"$899\", \"tokyo\": \"$1400\", \"berlin\": \"$499\"}\n",
|
||||
"\n",
|
||||
"def get_ticket_price(destination_city):\n",
|
||||
" print(f\"Tool get_ticket_price called for {destination_city}\")\n",
|
||||
" city = destination_city.lower()\n",
|
||||
" return ticket_prices.get(city, \"Unknown\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "80ca4e09-6287-4d3f-997d-fa6afbcf6c85",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get_ticket_price(\"London\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4afceded-7178-4c05-8fa6-9f2085e6a344",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# There's a particular dictionary structure that's required to describe our function:\n",
|
||||
"\n",
|
||||
"price_function = {\n",
|
||||
" \"name\": \"get_ticket_price\",\n",
|
||||
" \"description\": \"Get the price of a return ticket to the destination city. Call this whenever you need to know the ticket price, for example when a customer asks 'How much is a ticket to this city'\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"destination_city\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The city that the customer wants to travel to\",\n",
|
||||
" },\n",
|
||||
" },\n",
|
||||
" \"required\": [\"destination_city\"],\n",
|
||||
" \"additionalProperties\": False\n",
|
||||
" }\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bdca8679-935f-4e7f-97e6-e71a4d4f228c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# And this is included in a list of tools:\n",
|
||||
"\n",
|
||||
"tools = [{\"type\": \"function\", \"function\": price_function}]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "83070cc0-b213-4309-8040-b0cc8390b64b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Simulate the booking process by simply returning a confirmation string.\n",
|
||||
"\n",
|
||||
"def book_flight(destination_city, number_of_passengers, booking_date):\n",
|
||||
" \"\"\"\n",
|
||||
" Simulates booking a flight.\n",
|
||||
" \"\"\"\n",
|
||||
" print(f\"Tool book_flight called for {destination_city} for {number_of_passengers} passengers on {booking_date}\")\n",
|
||||
" return f\"Your booking to {destination_city} for {number_of_passengers} passengers on {booking_date} has been confirmed. Your booking reference is BKG-{hash(destination_city + str(number_of_passengers) + str(booking_date))}\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "781786f0-7106-4b10-89d7-453a0d10d204",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Tool definition for book_flight\n",
|
||||
"\n",
|
||||
"booking_function = {\n",
|
||||
" \"name\": \"book_flight\",\n",
|
||||
" \"description\": \"Books a flight for a customer. Call this whenever a customer asks to book a flight.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"destination_city\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The city the customer wants to fly to.\"\n",
|
||||
" },\n",
|
||||
" \"number_of_passengers\": {\n",
|
||||
" \"type\": \"integer\",\n",
|
||||
" \"description\": \"The number of passengers for the booking.\"\n",
|
||||
" },\n",
|
||||
" \"booking_date\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The date of the flight booking in YYYY-MM-DD format.\"\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"required\": [\"destination_city\", \"number_of_passengers\", \"booking_date\"],\n",
|
||||
" \"additionalProperties\": False\n",
|
||||
" }\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e3fc237c-9721-4fee-a56b-2ff12fc98e27",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Add the new booking_function to the existing tools list.\n",
|
||||
"\n",
|
||||
"tools.append({\"type\": \"function\", \"function\": booking_function})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a482eb03-188a-4526-8acf-3a1fe96aaaf0",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# To translate to a given language\n",
|
||||
"\n",
|
||||
"def translate_text(text, target_language):\n",
|
||||
" \"\"\"\n",
|
||||
" Translates text to a specified language.\n",
|
||||
" \n",
|
||||
" Args:\n",
|
||||
" text (str): The text to translate.\n",
|
||||
" target_language (str): The language to translate the text into.\n",
|
||||
" \n",
|
||||
" Returns:\n",
|
||||
" str: The translated text or an error message.\n",
|
||||
" \"\"\"\n",
|
||||
" print(f\"Tool translate_text called to translate to {target_language}\")\n",
|
||||
" \n",
|
||||
" # Use a system prompt to instruct the model to perform a translation\n",
|
||||
" system_prompt_for_language = f\"You are a helpful translation assistant. Translate the following text into {target_language}. Only provide the translated text without any additional conversational text.\"\n",
|
||||
" \n",
|
||||
" try:\n",
|
||||
" response = openai.chat.completions.create(\n",
|
||||
" model=MODEL,\n",
|
||||
" messages=[\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt_for_language},\n",
|
||||
" {\"role\": \"user\", \"content\": text}\n",
|
||||
" ],\n",
|
||||
" )\n",
|
||||
" result = response.choices[0].message.content\n",
|
||||
" return result\n",
|
||||
" \n",
|
||||
" except Exception as e:\n",
|
||||
" print(f\"Error during translation: {e}\")\n",
|
||||
" return \"Sorry, I encountered an error and could not complete the translation.\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "756e9859-94bc-4cef-bbc7-070d8ef6164b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Tool definition for translate_text\n",
|
||||
"\n",
|
||||
"translation_function = {\n",
|
||||
" \"name\": \"translate_text\",\n",
|
||||
" \"description\": \"Translates a given text to a specified target language. Call this whenever a customer asks for a translation.\",\n",
|
||||
" \"parameters\": {\n",
|
||||
" \"type\": \"object\",\n",
|
||||
" \"properties\": {\n",
|
||||
" \"text\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The text to be translated.\"\n",
|
||||
" },\n",
|
||||
" \"target_language\": {\n",
|
||||
" \"type\": \"string\",\n",
|
||||
" \"description\": \"The language to translate the text into (e.g., 'French', 'Spanish', 'Swahili').\"\n",
|
||||
" }\n",
|
||||
" },\n",
|
||||
" \"required\": [\"text\", \"target_language\"],\n",
|
||||
" \"additionalProperties\": False\n",
|
||||
" }\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5444455e-6e5c-4ef6-bd39-5ff01731dd4b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Integrate the tool\n",
|
||||
"\n",
|
||||
"tools.append({\"type\": \"function\", \"function\": translation_function})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c3d3554f-b4e3-4ce7-af6f-68faa6dd2340",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Getting OpenAI to use our Tool\n",
|
||||
"\n",
|
||||
"There's some fiddly stuff to allow OpenAI \"to call our tool\"\n",
|
||||
"\n",
|
||||
"What we actually do is give the LLM the opportunity to inform us that it wants us to run the tool.\n",
|
||||
"\n",
|
||||
"Here's how the new chat function looks:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ce9b0744-9c78-408d-b9df-9f6fd9ed78cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def chat(message, history):\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}] + history + [{\"role\": \"user\", \"content\": message}]\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
|
||||
"\n",
|
||||
" if response.choices[0].finish_reason==\"tool_calls\":\n",
|
||||
" message = response.choices[0].message\n",
|
||||
" response, city = handle_tool_call(message)\n",
|
||||
" messages.append(message)\n",
|
||||
" messages.append(response)\n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
||||
" \n",
|
||||
" return response.choices[0].message.content"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b0992986-ea09-4912-a076-8e5603ee631f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We have to write that function handle_tool_call:\n",
|
||||
"\n",
|
||||
"# Handle multiple tools\n",
|
||||
"def handle_tool_call(message):\n",
|
||||
" tool_call = message.tool_calls[0]\n",
|
||||
" function_name = tool_call.function.name\n",
|
||||
" arguments = json.loads(tool_call.function.arguments)\n",
|
||||
"\n",
|
||||
" destination_city = None\n",
|
||||
" translated_text = None\n",
|
||||
"\n",
|
||||
" if function_name == \"get_ticket_price\":\n",
|
||||
" city = arguments.get('destination_city')\n",
|
||||
" price = get_ticket_price(city)\n",
|
||||
" response_content = json.dumps({\"destination_city\": city, \"price\": price})\n",
|
||||
" destination_city = city\n",
|
||||
" elif function_name == \"book_flight\":\n",
|
||||
" destination_city = arguments.get('destination_city')\n",
|
||||
" number_of_passengers = arguments.get('number_of_passengers')\n",
|
||||
" booking_date = arguments.get('booking_date')\n",
|
||||
" confirmation = book_flight(destination_city, number_of_passengers, booking_date)\n",
|
||||
" response_content = json.dumps({\"confirmation_message\": confirmation})\n",
|
||||
" elif function_name == \"translate_text\":\n",
|
||||
" text = arguments.get('text')\n",
|
||||
" target_language = arguments.get('target_language')\n",
|
||||
" translated_text = translate_text(text, target_language)\n",
|
||||
" response_content = json.dumps({\"translated_text\": translated_text})\n",
|
||||
" else:\n",
|
||||
" response_content = json.dumps({\"error\": f\"Unknown tool: {function_name}\"})\n",
|
||||
"\n",
|
||||
" response = {\n",
|
||||
" \"role\": \"tool\",\n",
|
||||
" \"content\": response_content,\n",
|
||||
" \"tool_call_id\": tool_call.id\n",
|
||||
" }\n",
|
||||
" return response, destination_city"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f4be8a71-b19e-4c2f-80df-f59ff2661f14",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# gr.ChatInterface(fn=chat, type=\"messages\").launch()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "473e5b39-da8f-4db1-83ae-dbaca2e9531e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Let's go multi-modal!!\n",
|
||||
"\n",
|
||||
"We can use DALL-E-3, the image generation model behind GPT-4o, to make us some images\n",
|
||||
"\n",
|
||||
"Let's put this in a function called artist.\n",
|
||||
"\n",
|
||||
"### Price alert: each time I generate an image it costs about 4 cents - don't go crazy with images!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "2c27c4ba-8ed5-492f-add1-02ce9c81d34c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Some imports for handling images\n",
|
||||
"\n",
|
||||
"import base64\n",
|
||||
"from io import BytesIO\n",
|
||||
"from PIL import Image"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "773a9f11-557e-43c9-ad50-56cbec3a0f8f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def artist(city):\n",
|
||||
" image_response = openai.images.generate(\n",
|
||||
" model=\"dall-e-3\",\n",
|
||||
" prompt=f\"An image representing a vacation in {city}, showing tourist spots and everything unique about {city}, in a vibrant pop-art style\",\n",
|
||||
" size=\"1024x1024\",\n",
|
||||
" n=1,\n",
|
||||
" response_format=\"b64_json\",\n",
|
||||
" )\n",
|
||||
" image_base64 = image_response.data[0].b64_json\n",
|
||||
" image_data = base64.b64decode(image_base64)\n",
|
||||
" return Image.open(BytesIO(image_data))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d877c453-e7fb-482a-88aa-1a03f976b9e9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# image = artist(\"New York City\")\n",
|
||||
"# display(image)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f4975b87-19e9-4ade-a232-9b809ec75c9a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Audio (NOTE - Audio is optional for this course - feel free to skip Audio if it causes trouble!)\n",
|
||||
"\n",
|
||||
"And let's make a function talker that uses OpenAI's speech model to generate Audio\n",
|
||||
"\n",
|
||||
"### Troubleshooting Audio issues\n",
|
||||
"\n",
|
||||
"If you have any problems running this code below (like a FileNotFound error, or a warning of a missing package), you may need to install FFmpeg, a very popular audio utility.\n",
|
||||
"\n",
|
||||
"**For Mac Users**\n",
|
||||
"\n",
|
||||
"1. Install homebrew if you don't have it already by running this in a Terminal window and following any instructions: \n",
|
||||
"`/bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)\"`\n",
|
||||
"\n",
|
||||
"2. Then install FFmpeg with `brew install ffmpeg`\n",
|
||||
"\n",
|
||||
"3. Verify your installation with `ffmpeg -version` and if everything is good, within Jupyter Lab do Kernel -> Restart kernel to pick up the changes\n",
|
||||
"\n",
|
||||
"Message me or email me at ed@edwarddonner.com with any problems!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4cc90e80-c96e-4dd4-b9d6-386fe2b7e797",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## To check you now have ffmpeg and can access it here\n",
|
||||
"\n",
|
||||
"Excecute the next cell to see if you get a version number. (Putting an exclamation mark before something in Jupyter Lab tells it to run it as a terminal command rather than python code).\n",
|
||||
"\n",
|
||||
"If this doesn't work, you may need to actually save and close down your Jupyter lab, and start it again from a new Terminal window (Mac) or Anaconda prompt (PC), remembering to activate the llms environment. This ensures you pick up ffmpeg.\n",
|
||||
"\n",
|
||||
"And if that doesn't work, please contact me!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7b3be0fb-1d34-4693-ab6f-dbff190afcd7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!ffmpeg -version\n",
|
||||
"!ffprobe -version\n",
|
||||
"!ffplay -version"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d91d3f8f-e505-4e3c-a87c-9e42ed823db6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# For Mac users - and possibly many PC users too\n",
|
||||
"\n",
|
||||
"This version should work fine for you. It might work for Windows users too, but you might get a Permissions error writing to a temp file. If so, see the next section!\n",
|
||||
"\n",
|
||||
"As always, if you have problems, please contact me! (You could also comment out the audio talker() in the later code if you're less interested in audio generation)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "ffbfe93b-5e86-4e68-ba71-b301cd5230db",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pydub import AudioSegment\n",
|
||||
"from pydub.playback import play\n",
|
||||
"\n",
|
||||
"def talker(message):\n",
|
||||
" response = openai.audio.speech.create(\n",
|
||||
" model=\"tts-1\",\n",
|
||||
" voice=\"alloy\", # Also, try replacing onyx with alloy\n",
|
||||
" input=message\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" audio_stream = BytesIO(response.content)\n",
|
||||
" audio = AudioSegment.from_file(audio_stream, format=\"mp3\")\n",
|
||||
" play(audio)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b88d775d-d357-4292-a1ad-5dc5ed567281",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# talker(\"Well, hi there\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f38d0d27-33bf-4992-a2e5-5dbed973cde7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# More involved Gradio code as we're not using the preset Chat interface!\n",
|
||||
"# Passing in inbrowser=True in the last line will cause a Gradio window to pop up immediately.\n",
|
||||
"\n",
|
||||
"with gr.Blocks() as ui:\n",
|
||||
" with gr.Row():\n",
|
||||
" chatbot = gr.Chatbot(height=500)\n",
|
||||
" image = gr.Image(height=500)\n",
|
||||
" with gr.Row():\n",
|
||||
" entry = gr.Textbox(label=\"Chat with our AI Assistant:\")\n",
|
||||
" with gr.Row():\n",
|
||||
" languages = [\"English\", \"Swahili\", \"French\", \"Chinese\", \"German\"]\n",
|
||||
" language_dropdown = gr.Dropdown(\n",
|
||||
" label=\"Select a language for translation\",\n",
|
||||
" choices=languages,\n",
|
||||
" value=languages[0] # Default to English\n",
|
||||
" )\n",
|
||||
"\n",
|
||||
" audio_options = [\"Yes\", \"No\"]\n",
|
||||
" audio_dropdown = gr.Dropdown(\n",
|
||||
" label=\"Select whether to respond with audio\",\n",
|
||||
" choices=audio_options,\n",
|
||||
" value=audio_options[1] # Default to No\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" with gr.Row():\n",
|
||||
" clear = gr.Button(\"Clear\")\n",
|
||||
"\n",
|
||||
" def user_message_updater(user_message, history):\n",
|
||||
" return \"\", history + [[user_message, None]]\n",
|
||||
"\n",
|
||||
" def chat_with_assistant(history, target_language, audio_response):\n",
|
||||
" message = history[-1][0] # Get the user's message from the last list in history\n",
|
||||
" \n",
|
||||
" # Use the existing chat logic\n",
|
||||
" messages = [{\"role\": \"system\", \"content\": system_message}]\n",
|
||||
" for msg_user, msg_assistant in history:\n",
|
||||
" messages.append({\"role\": \"user\", \"content\": msg_user})\n",
|
||||
" if msg_assistant:\n",
|
||||
" messages.append({\"role\": \"assistant\", \"content\": msg_assistant})\n",
|
||||
" \n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages, tools=tools)\n",
|
||||
" \n",
|
||||
" if response.choices[0].finish_reason==\"tool_calls\":\n",
|
||||
" message = response.choices[0].message\n",
|
||||
" response_tool, city = handle_tool_call(message)\n",
|
||||
"\n",
|
||||
" messages.append(message.model_dump()) # Append message as a dictionary using .model_dump()\n",
|
||||
" messages.append(response_tool)\n",
|
||||
" \n",
|
||||
" response = openai.chat.completions.create(model=MODEL, messages=messages)\n",
|
||||
" \n",
|
||||
" \n",
|
||||
" final_response_content = response.choices[0].message.content\n",
|
||||
" history[-1][1] = final_response_content # Update the last message with the assistant's reply\n",
|
||||
"\n",
|
||||
" if target_language != \"English\": # Assuming \"English\" is the default and no translation is needed\n",
|
||||
" translated_response = translate_text(final_response_content, target_language)\n",
|
||||
" final_response_content = translated_response\n",
|
||||
"\n",
|
||||
" history[-1][1] = final_response_content\n",
|
||||
"\n",
|
||||
" if audio_response != \"No\":\n",
|
||||
" talker(final_response_content)\n",
|
||||
"\n",
|
||||
" return history, None # Return a tuple of (the updated history, an empty image)\n",
|
||||
"\n",
|
||||
" entry.submit(\n",
|
||||
" user_message_updater,\n",
|
||||
" inputs=[entry, chatbot],\n",
|
||||
" outputs=[entry, chatbot],\n",
|
||||
" queue=False\n",
|
||||
" ).then(\n",
|
||||
" chat_with_assistant, \n",
|
||||
" inputs=[chatbot, language_dropdown, audio_dropdown],\n",
|
||||
" outputs=[chatbot, image]\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" clear.click(lambda: None, inputs=None, outputs=[chatbot, image], queue=False)\n",
|
||||
"\n",
|
||||
"ui.launch(inbrowser=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "26ab4bd7-b7c4-4e1c-aa51-578326660370",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "69a51144-0e51-4bbf-b5d0-a9e0a60d05ae",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "39144b88-fc11-4156-84f9-d9157ddaec47",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
@@ -0,0 +1,51 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d006b2ea-9dfe-49c7-88a9-a5a0775185fd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Additional End of week Exercise - week 2\n",
|
||||
"\n",
|
||||
"Now use everything you've learned from Week 2 to build a full prototype for the technical question/answerer you built in Week 1 Exercise.\n",
|
||||
"\n",
|
||||
"This should include a Gradio UI, streaming, use of the system prompt to add expertise, and the ability to switch between models. Bonus points if you can demonstrate use of a tool!\n",
|
||||
"\n",
|
||||
"If you feel bold, see if you can add audio input so you can talk to it, and have it respond with audio. ChatGPT or Claude can help you, or email me if you have questions.\n",
|
||||
"\n",
|
||||
"I will publish a full solution here soon - unless someone beats me to it...\n",
|
||||
"\n",
|
||||
"There are so many commercial applications for this, from a language tutor, to a company onboarding solution, to a companion AI to a course (like this one!) I can't wait to see your results."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a07e7793-b8f5-44f4-aded-5562f633271a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user