Merge pull request #553 from kunalBrahma/community-contributions-branch
Community contributions branch
This commit is contained in:
230
week1/community-contributions/day1-BitcoinMarketPrediction.ipynb
Normal file
230
week1/community-contributions/day1-BitcoinMarketPrediction.ipynb
Normal file
@@ -0,0 +1,230 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "7db973a2-c95e-4939-a0d7-b54edec4d2cf",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Bitcoin Market Prediction uisng CoinmarketCap\n",
|
||||
"An AI-powered project using historical CoinMarketCap data to predict Bitcoin price trends and offer actionable insights for traders."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b792b517-bbc8-4e2c-bff2-45fad1a784dc",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Imports"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "51523d62-825a-4a15-aec2-7c910beb5fda",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import requests\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"from bs4 import BeautifulSoup\n",
|
||||
"from IPython.display import Markdown, display\n",
|
||||
"from openai import OpenAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2e3816b0-4557-4225-bfb9-9933d813548a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## .env configuration"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "02be59e7-01cc-41b5-88c3-a47860570078",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"load_dotenv(override=True)\n",
|
||||
"api_key = os.getenv('OPENAI_API_KEY')\n",
|
||||
"\n",
|
||||
"# Check the key\n",
|
||||
"\n",
|
||||
"if not api_key:\n",
|
||||
" print(\"No API key was found - please head over to the troubleshooting notebook in this folder to identify & fix!\")\n",
|
||||
"elif not api_key.startswith(\"sk-proj-\"):\n",
|
||||
" print(\"An API key was found, but it doesn't start sk-proj-; please check you're using the right key - see troubleshooting notebook\")\n",
|
||||
"elif api_key.strip() != api_key:\n",
|
||||
" print(\"An API key was found, but it looks like it might have space or tab characters at the start or end - please remove them - see troubleshooting notebook\")\n",
|
||||
"else:\n",
|
||||
" print(\"API key found and looks good so far!\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "3fc32555-ea4e-45fe-ad44-9dbf4441afd1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### This line creates an authenticated OpenAI client instance, used to make API requests in your code."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0845c687-6610-4f83-89e8-fb94bc47ddd2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from openai import OpenAI\n",
|
||||
"openai = OpenAI(api_key=api_key)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d140db1a-dd72-4986-8f38-09f8d8f97b00",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"headers = {\n",
|
||||
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"class Website:\n",
|
||||
"\n",
|
||||
" def __init__(self, url):\n",
|
||||
" \"\"\"\n",
|
||||
" Create this Website object from the given url using the BeautifulSoup library\n",
|
||||
" \"\"\"\n",
|
||||
" self.url = url\n",
|
||||
" response = requests.get(url, headers=headers)\n",
|
||||
" soup = BeautifulSoup(response.content, 'html.parser')\n",
|
||||
" self.title = soup.title.string if soup.title else \"No title found\"\n",
|
||||
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
|
||||
" irrelevant.decompose()\n",
|
||||
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "fdc96768-94a8-4a08-acf1-32a62b699b94",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"system_prompt = \"\"\"\n",
|
||||
"You are an intelligent assistant specialized in Bitcoin market prediction. Your tasks are:\n",
|
||||
"\n",
|
||||
"- Collect, preprocess, and analyze historical Bitcoin price and volume data sourced from CoinMarketCap historical data tables or API.\n",
|
||||
"- Extract relevant time series and technical features from OHLC (open, high, low, close) and volume data.\n",
|
||||
"- Use machine learning or statistical models to forecast future Bitcoin price trends.\n",
|
||||
"- Output clear, concise, and actionable insights, focusing on predicted price direction and potential trading signals.\n",
|
||||
"- Ensure all data collection respects CoinMarketCap’s terms of service.\n",
|
||||
"- Present findings in user-friendly language, explaining prediction confidence and market risks.\n",
|
||||
"- Continuously improve prediction accuracy through back-testing on updated datasets.\n",
|
||||
"\n",
|
||||
"\"\"\"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "7d39e983-5b65-4de1-bdf0-e4239c3eb03f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def user_prompt_for(website):\n",
|
||||
" user_prompt = f\"You are analyzing historical Bitcoin market data from the webpage titled '{website.title}'.\\n\"\n",
|
||||
" user_prompt += (\n",
|
||||
" \"The data includes daily open, high, low, close prices, trading volume, \"\n",
|
||||
" \"and market capitalization presented in a table format.\\n\"\n",
|
||||
" \"Please provide a clear and concise analysis in Markdown format, focusing on recent trends, \"\n",
|
||||
" \"price movements, volatility, and any insights that could help forecast Bitcoin price directions.\\n\"\n",
|
||||
" \"If possible, include technical indicators, significant patterns, or notable market events mentioned in the data.\\n\\n\"\n",
|
||||
" )\n",
|
||||
" user_prompt += website.text\n",
|
||||
" return user_prompt\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d3d41ed3-4753-49f2-b51f-37e8be43102c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def messages_for(website):\n",
|
||||
" return [\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
||||
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
|
||||
" ]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "0eb99fcf-75a2-41b8-bf53-568f94264438",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# And now: call the OpenAI API. You will get very familiar with this!\n",
|
||||
"\n",
|
||||
"def summarize(url):\n",
|
||||
" website = Website(url)\n",
|
||||
" response = openai.chat.completions.create(\n",
|
||||
" model = \"gpt-4o-mini\",\n",
|
||||
" messages = messages_for(website)\n",
|
||||
" )\n",
|
||||
" return response.choices[0].message.content\n",
|
||||
"\n",
|
||||
"# A function to display this nicely in the Jupyter output, using markdown\n",
|
||||
"\n",
|
||||
"def display_summary(summary): \n",
|
||||
" display(Markdown(summary))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "a0e57921-5132-40c6-834b-03a11a96425c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"url = \"https://coinmarketcap.com/currencies/bitcoin/historical-data/3\"\n",
|
||||
"summary = summarize(url)\n",
|
||||
"display_summary(summary)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "19d9b69a-6493-402d-a0b4-a486c322c816",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
105
week1/community-contributions/day2_Ollama_Solution.ipynb
Normal file
105
week1/community-contributions/day2_Ollama_Solution.ipynb
Normal file
@@ -0,0 +1,105 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "663695bd-d1f2-4acf-8669-02d9f75f1bf4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Day 2: Ollama Solution for Website Summarization\n",
|
||||
"### Building and Deploying Website Summarization Tools with Ollama"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "112ef04a-136e-4e65-b94e-8674a64606ed",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import requests\n",
|
||||
"from bs4 import BeautifulSoup\n",
|
||||
"from IPython.display import Markdown, display\n",
|
||||
"\n",
|
||||
"OLLAMA_API = \"http://localhost:11434/api/chat\"\n",
|
||||
"HEADERS = {\"Content-Type\": \"application/json\"}\n",
|
||||
"MODEL = \"llama3.2\"\n",
|
||||
"\n",
|
||||
"headers = {\n",
|
||||
" \"User-Agent\": \"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36\"\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"class Website:\n",
|
||||
"\n",
|
||||
" def __init__(self, url):\n",
|
||||
" \"\"\"\n",
|
||||
" Create this Website object from the given url using the BeautifulSoup library\n",
|
||||
" \"\"\"\n",
|
||||
" self.url = url\n",
|
||||
" response = requests.get(url, headers=headers)\n",
|
||||
" soup = BeautifulSoup(response.content, 'html.parser')\n",
|
||||
" self.title = soup.title.string if soup.title else \"No title found\"\n",
|
||||
" for irrelevant in soup.body([\"script\", \"style\", \"img\", \"input\"]):\n",
|
||||
" irrelevant.decompose()\n",
|
||||
" self.text = soup.body.get_text(separator=\"\\n\", strip=True)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"system_prompt = \"You are an assistant that analyzes the contents of a website \\\n",
|
||||
"and provides a short summary, ignoring text that might be navigation related. \\\n",
|
||||
"Respond in markdown.\"\n",
|
||||
"\n",
|
||||
"def user_prompt_for(website):\n",
|
||||
" user_prompt = f\"You are looking at a website titled {website.title}\"\n",
|
||||
" user_prompt += \"\\nThe contents of this website is as follows; \\\n",
|
||||
"please provide a short summary of this website in markdown. \\\n",
|
||||
"If it includes news or announcements, then summarize these too.\\n\\n\"\n",
|
||||
" user_prompt += website.text\n",
|
||||
" return user_prompt\n",
|
||||
"\n",
|
||||
"def messages_for(website):\n",
|
||||
" return [\n",
|
||||
" {\"role\": \"system\", \"content\": system_prompt},\n",
|
||||
" {\"role\": \"user\", \"content\": user_prompt_for(website)}\n",
|
||||
" ]\n",
|
||||
"\n",
|
||||
"url = \"https://sitemakerlab.com/\" \n",
|
||||
"site = Website(url)\n",
|
||||
"messages = messages_for(site)\n",
|
||||
"\n",
|
||||
"def summarize(url):\n",
|
||||
" website = Website(url)\n",
|
||||
" response = ollama_via_openai.chat.completions.create(\n",
|
||||
" model = MODEL,\n",
|
||||
" messages = messages_for(website)\n",
|
||||
" )\n",
|
||||
" return response.choices[0].message.content\n",
|
||||
"\n",
|
||||
"def display_summary(url):\n",
|
||||
" summary = summarize(url)\n",
|
||||
" display(Markdown(summary))\n",
|
||||
"\n",
|
||||
"display_summary(\"https://edwarddonner.com\")\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
Reference in New Issue
Block a user