Files
LLM_Engineering_OLD/week1/community-contributions/D2-property-rental-assistant/README.md
2025-08-15 10:42:25 +01:00

190 lines
6.1 KiB
Markdown

# AI Property Rental Assistant
An intelligent property rental assistant Jupyter notebook that scrapes real estate listings from OnTheMarket and uses a local LLM (DeepSeek R1) to analyze and recommend properties based on user requirements.
## Features
- **Web Scraping**: Automatically fetches property listings from OnTheMarket
- **AI-Powered Analysis**: Uses DeepSeek R1 model via Ollama for intelligent recommendations
- **Personalized Recommendations**: Filters and ranks properties based on:
- Budget constraints
- Number of bedrooms
- Tenant type (student, family, professional)
- Location preferences
- **Clean Output**: Returns formatted markdown with top 3-5 property recommendations
- **Smart Filtering**: Handles cases where no suitable properties are found with helpful suggestions
## Prerequisites
- Python 3.7+
- Ollama installed and running locally
- DeepSeek R1 14B model pulled in Ollama
## Installation
1. **Clone the repository**
```bash
git clone <your-repo-url>
cd property-rental-assistant
```
2. **Install required Python packages**
```bash
pip install requests beautifulsoup4 ollama ipython jupyter
```
3. **Install and setup Ollama**
```bash
# Install Ollama (macOS/Linux)
curl -fsSL https://ollama.ai/install.sh | sh
# For Windows, download from: https://ollama.ai/download
```
4. **Pull the DeepSeek R1 model**
```bash
ollama pull deepseek-r1:14b
```
5. **Start Ollama server**
```bash
ollama serve
```
## Usage
### Running the Notebook
1. **Start Jupyter Notebook**
```bash
jupyter notebook
```
2. **Open the notebook**
Navigate to `property_rental_assistant.ipynb` in the Jupyter interface
3. **Run all cells**
Click `Cell``Run All` or use `Shift + Enter` to run cells individually
### Customizing Search Parameters
Modify the `user_needs` variable in the notebook:
```python
user_needs = "I'm a student looking for a 2-bedroom house in Durham under £2,000/month"
```
Other examples:
- `"Family of 4 looking for 3-bedroom house with garden in Durham, budget £2,500/month"`
- `"Professional couple seeking modern 1-bed apartment near city center, max £1,500/month"`
- `"Student group needs 4-bedroom house near Durham University, £600/month per person"`
### Changing the Property Website
Update the `website_url` variable in the notebook:
```python
website_url = "https://www.onthemarket.com/to-rent/property/durham/"
```
## Architecture
```
┌─────────────────┐ ┌──────────────┐ ┌─────────────┐
│ OnTheMarket │────▶│ Web Scraper │────▶│ Ollama │
│ Website │ │ (BeautifulSoup)│ │ (DeepSeek R1)│
└─────────────────┘ └──────────────┘ └─────────────┘
┌─────────────────────────────────┐
│ AI-Generated Recommendations │
│ • Top 5 matching properties │
│ • Filtered by requirements │
│ • Markdown formatted output │
└─────────────────────────────────┘
```
## Project Structure
```
property-rental-assistant/
├── property_rental_assistant.ipynb # Main Jupyter notebook
└── README.md # This file
```
## 🔧 Configuration
### Ollama API Settings
```python
OLLAMA_API = "http://localhost:11434/api/chat" # Default Ollama endpoint
MODEL = "deepseek-r1:14b" # Model to use
```
### Web Scraping Settings
```python
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
}
timeout = 10 # Request timeout in seconds
```
### Content Limits
```python
website.text[:4000] # Truncate content to 4000 chars for token limits
```
## How It Works
1. **Web Scraping**: The `Website` class fetches and parses HTML content from the property listing URL
2. **Content Cleaning**: Removes scripts, styles, and images to extract clean text
3. **Prompt Engineering**: Combines system prompt with user requirements and scraped data
4. **LLM Analysis**: Sends the prompt to DeepSeek R1 via Ollama API
5. **Recommendation Generation**: The AI analyzes listings and returns top matches in markdown format
## 🛠️ Troubleshooting
### Ollama Connection Error
```
Error communicating with Ollama: [Errno 111] Connection refused
```
**Solution**: Ensure Ollama is running with `ollama serve`
### Model Not Found
```
Error: model 'deepseek-r1:14b' not found
```
**Solution**: Pull the model with `ollama pull deepseek-r1:14b`
### Web Scraping Blocked
```
Error fetching website: 403 Forbidden
```
**Solution**: The website may be blocking automated requests. Try:
- Updating the User-Agent string
- Adding delays between requests
- Using a proxy or VPN
### Insufficient Property Data
If recommendations are poor quality, the scraper may not be capturing listing details properly. Check:
- The website structure hasn't changed
- The content truncation limit (4000 chars) isn't too restrictive
## Future Enhancements
- [ ] Support multiple property websites (Rightmove, Zoopla, SpareRoom)
- [ ] Interactive CLI for dynamic user input
- [ ] Property image analysis
- [ ] Save search history and favorite properties
- [ ] Email notifications for new matching properties
- [ ] Price trend analysis
- [ ] Commute time calculations to specified locations
- [ ] Multi-language support
- [ ] Web interface with Flask/FastAPI
- [ ] Docker containerization
## Acknowledgments
- [Ollama](https://ollama.ai/) for local LLM hosting
- [DeepSeek](https://www.deepseek.com/) for the R1 model
- [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) for web scraping
- [OnTheMarket](https://www.onthemarket.com/) for property data